B2.1 Introduction to Representation Theory

Problem Sheet 2, MT 2017

1. Let A be the three-dimensional \mathbb{R}-algebra of all upper triangular 2×2 matrices over \mathbb{R}. Find a composition series of the A-module A. Show that A has two simple A-modules (up to isomorphism), and that one of them occurs twice as a composition factor in your composition series.
2. The radical $\operatorname{rad} V$ of an A-module V is defined to be the intersection of all maximal submodules of V. Let A be an algebra and consider the A-modules and A-submodules $V \subseteq M_{1}, M_{2} \subseteq X$.
(a) Show that $M_{1} / V \cap M_{2} / V=\left(M_{1} \cap M_{2}\right) / V$.
(b) Suppose that V is finite dimensional. Show that $V / \operatorname{rad}(V)$ is semisimple.
(c) Show that $\operatorname{rad}(V)$ is the smallest submodule W of V with V / W semisimple.
3. Let G be a finite group and N a normal subgroup of G. Let V be a simple $K G$-module. View V as $K N$-module by restriction of the action. Prove that V as $K N$-module is semi-simple.
4. Suppose V is an A-module with two composition series, say $0 \subset U \subset V$ and $0 \subset W \subset V$ and where $U \neq W$.
(a) Show that $V=U \oplus W$ as A-modules.
(b) Now assume that U and W are isomorphic, let $\psi: U \rightarrow W$ be an A-module isomorphism. For $\lambda \in K$ fixed, define

$$
U_{\lambda}:=\{u+\lambda \psi(u) \mid u \in U\} .
$$

Check that U_{λ} is a submodule of V and that it is isomorphic to U.
(c) Deduce that V has infinitely many composition series when K is infinite.
5. Let $A=\mathbb{C} G$ be the group algebra of the dihedral group of order 10 ,

$$
G=D_{10}=\left\langle\sigma, \tau: \sigma^{5}=1, \tau^{2}=1, \tau \sigma \tau^{-1}=\sigma^{-1}\right\rangle
$$

Suppose ζ is a 5 -th root of 1 (and $\zeta \neq 1$). You may assume that the matrices

$$
\rho(\sigma)=\left(\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right), \quad \rho(\tau)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

satisfy the defining relations for G, hence give a group homomorphism $\rho: G \rightarrow G L_{2}(\mathbb{C})$.
(a) Prove that the representation ρ is irreducible, (that is the A-module V corresponding to the representation ρ is simple).
(b) Suppose G is any finite group, and $\rho_{1}, \rho_{2}: G \rightarrow G L_{n}(\mathbb{C})$ are representations. Show that if ρ_{1}, ρ_{2} are equivalent then for all $g \in G$, we have $\operatorname{tr}\left(\rho_{1}(g)\right)=\operatorname{tr}\left(\rho_{2}(g)\right)$ where $\operatorname{tr}(X)$ is the usual trace of a matrix X.
(c) Deduce that if $G=D_{10}$, then G has at least two non-equivalent irreducible representations of degree two (equivalently two non-isomorphic two-dimensional simple $\mathbb{C} G$-modules).
6. Let A be a finite-dimensional algebra. An ideal I of A is called nilpotent if there is some natural number $n \geq 1$ with $I^{n}=0$, that is, such that $x_{1} \cdots x_{n}=0$ for all $x_{i} \in I$. Define the radical of the algebra A as

$$
\operatorname{rad}(A)=\{a \in A \mid a \cdot S=0 \text { for any simple } A \text {-module } S\}
$$

(a) Show that the sum of two nilpotent ideals is nilpotent.
(b) Show that $\operatorname{rad}(A)$ is a (two-sided) ideal in A.
(c) By considering a composition series of A, or otherwise, show that $\operatorname{rad}(A)$ is nilpotent.

Conclude that the radical of an algebra A coincides with the largest nilpotent ideal of A.
7. (a) Show that the only one-dimensional $\mathbb{C} S_{n}$-modules are the trivial module and the sign module. (The latter is the module in which each permutation acts by its signature.)
(b) Determine all the simple $\mathbb{C} S_{3}$-modules, up to isomorphism.
(c) A group representation $\rho: G \rightarrow G L(V)$ is called faithful if

$$
\operatorname{ker} \rho=\{1\} \text {. }
$$

Determine all the irreducible non-faithful representations of S_{n} (up to equivalence).

